Journal Management System
 
Home  |   Add your Journal  |   eJManager Features  |   Journal List
Author Login | Reviewer Login | Editor Login
Search  

Journal of Experimental and Integrative Medicine
Periodical of TEMKODER
Journal Home Page
ISSN: 1309-4572 (Print)
ISSN: 2146-3298 (Online)
Language: [ English ]  

  » Volume 6, Issue 2
      pp. 53-97
  » Volume 6, Issue 1
      pp. 1-51

 

Open Access

Review Article



Epigenetic mechanisms in human physiology and diseases

Ahmet Korkmaz, Lucien C. Manchester, Turgut Topal, Shuran Ma, Dun Xian Tan, Russel J. Reiter.

Cited by (5)

Abstract
Although the sequence of human genome is known, our understanding of the complicated network that takes place inside cells is far from complete. Many questions still remain unanswered with the regard to how the complex genomic information is used by human cells. For example, how does the genome work to orchestrate changes in gene expression during development and differentiation? Are all genes expressed in every cell type in all human tissues? How many genes are coding or non-coding in a particular cell? What are the functions of non-coding genes? It seems clear the many answers to these questions will be found in a field of growing interest, i.e. the study of epigenetics.
Epigenetic mechanisms are modifications that occur in the genetic material that do not change the nucleotide sequence, but instead may cause conformational modifications in DNA. There are basically three epigenetic modifications; DNA methylation, histone modification and regulation by non-coding RNA. This paper summarizes epigenetic regulatory mechanisms and their effects on gene transcription.

Key words: Cancer; Epi-drugs; Epigenetic; Gene regulation; Histone modification; Non-coding RNAs



REFERENCES
1.Mathers JC, Strathdee G, Relton CL. Induction of epigenetic alterations by dietary and other environmental factors. Adv Genet 2010; 71:3-39.
[DOI via Crossref]    [Pubmed]   

2.Choudhuri S, Cui Y, Klaassen CD. Molecular targets of epigenetic regulation and effectors of environmental influences. Toxicol Appl Pharmacol 2010; 245:378-93.
[
DOI via Crossref]    [Pubmed]    [PMC Free Fulltext]   

3.Korkmaz A, Oter S, Seyrek M, Topal T. Molecular, genetic and epigenetic pathways of peroxynitrite-induced cellular toxicity. Interdiscip Toxicol 2009; 2:219-28.
[
DOI via Crossref]    [Pubmed]    [PMC Free Fulltext]   

4.Portela A, Esteller M. Epigenetic modifications and human disease. Nat Biotechnol 2010; 28:1057-68.
[
DOI via Crossref]    [Pubmed]   

5.Arnaud P. Genomic imprinting in germ cells: imprints are under control. Reproduction 2010; 140:411-23.
[
DOI via Crossref]    [Pubmed]   

6.Jiang YH, Bressler J, Beaudet AL. Epigenetics and human disease. Annu Rev Genomics Hum Genet 2004; 5:479-510.
[
DOI via Crossref]    [Pubmed]   

7.Gopalakrishnan S, Van Emburgh BO, Robertson KD. DNA methylation in development and human disease. Mutat Res 2008; 647:30-8.
[
DOI via Crossref]    [Pubmed]    [PMC Free Fulltext]   

8.Maston GA, Evans SK, Green MR. Transcriptional regulatory elements in the human genome. Annu Rev Genomics Hum Genet 2006; 7:29-59.
[
DOI via Crossref]    [Pubmed]   

9.Woodcock CL, Ghosh RP. Chromatin higher-order structure and dynamics. Cold Spring Harb Perspect Biol 2010; 2:a000596.
[
DOI via Crossref]    [Pubmed]    [PMC Free Fulltext]   

10.Campos EI, Reinberg D. Histones: annotating chromatin. Annual Review of Genetics 2009; 43:559-99.
[
DOI via Crossref]    [Pubmed]   

11.Santos-Rosa H, Caldas C. Chromatin modifier enzymes, the histone code and cancer. Eur J Cancer 2005; 41:2381-402.
[
DOI via Crossref]    [Pubmed]   

12.Cheung P, Lau P. Epigenetic regulation by histone methylation and histone variants. Mol Endocrinol 2005; 19:563-73.
[
DOI via Crossref]    [Pubmed]   

13.Strahl BD, Allis CD. The language of covalent histone modifications. Nature 2000; 403:41-5.
[
DOI via Crossref]    [Pubmed]   

14.Biel M, Wascholowski V, Giannis A. Epigenetics an epicenter of gene regulation: histones and histone-modifying enzymes. Angew Chem Int Ed Engl 2005; 44:3186-216.
[
DOI via Crossref]    [Pubmed]   

15.Clapier CR, Cairns BR. The biology of chromatin remodeling complexes. Annu Rev Biochem 2009; 78:273-304.
[
DOI via Crossref]    [Pubmed]   

16.Jenuwein T, Allis CD. Translating the histone code. Science 2001; 293:1074-80.
[
DOI via Crossref]    [Pubmed]   

17.Lee JS, Smith E, Shilatifard A. The language of histone crosstalk. Cell 2010; 142:682-5.
[
DOI via Crossref]    [Pubmed]   

18.Ideraabdullah FY, Vigneau S, Bartolomei MS. Genomic imprinting mechanisms in mammals. Mutat Res 2008; 647:77-85.
[
DOI via Crossref]    [Pubmed]    [PMC Free Fulltext]   

19.Takai D, Jones PA. Comprehensive analysis of CpG islands in human chromosomes 21 and 22. Proc Natl Acad Sci USA 2002; 99:3740-5.
[
DOI via Crossref]    [Pubmed]    [PMC Free Fulltext]   

20.Kulis M, Esteller M. DNA methylation and cancer. Adv Genet 2010; 70:27-56.
[
DOI via Crossref]    [Pubmed]   

21.Brenner C, Fuks F. DNA methyltransferases: facts, clues, mysteries. Curr Top Microbiol Immunol 2006; 301:45-66.
[
DOI via Crossref]   

22.Li E, Bestor TH, Jaenisch R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 1992; 69:915-26.
[
DOI via Crossref]   

23.Turek-Plewa J, Jaqodzinski PP. The role of mammalian DNA methyltransferases in the regulation of gene expression. Cell Mol Biol Lett 2005; 10:631-47.
[
Pubmed]   

24.Weber B, Stresemann C, Brueckner B, Lyko F. Methylation of human microrna genes in normal and neoplastic cells. Cell Cycle 2007; 6:1001-5.
[
DOI via Crossref]    [Pubmed]   

25.Waki T, Tamura G, Sato M, Motoyama T. Age-related methylation of tumor suppressor and tumor-related genes: an analysis of autopsy samples. Oncogene 2003; 22:4128-33.
[
DOI via Crossref]    [Pubmed]   

26.So K, Tamura G, Honda T, Homma N, Waki T, Togawa N, Nishizuka S, Motoyama T. Multiple tumor suppressor genes are increasingly methylated with age in non-neoplastic gastric epithelia. Cancer Sci 2006; 97:1155-8.
[
DOI via Crossref]    [Pubmed]   

27.Issa JP, Ottaviano YL, Celano P, Hamilton SR, Davidson NE, Baylin SB. Methylation of the oestrogen receptor CpG island links ageing and neoplasia in human colon. Nat Genet 1994; 7:536-40.
[
DOI via Crossref]    [Pubmed]   

28.Issa JP, Vertino PM, Boehm CD, Newsham IF, Baylin SB. Switch from monoallelic to biallelic human IGF2 promoter methylation during aging and carcinogenesis. Proc Natl Acad Sci USA 1996; 93:11757-62.
[
DOI via Crossref]   

29.Jovanovic J, Ronneberg JA, Tost J, Kristensen V. The epigenetics of breast cancer. Mol Oncol 2010; 4:242-54.
[
DOI via Crossref]    [Pubmed]   

30.Korkmaz A, Sanchez-Barcelo EJ, Tan DX, Reiter RJ. Role of melatonin in the epigenetic regulation of breast cancer. Breast Cancer Res Treat 2009; 115:13-27.
[
DOI via Crossref]    [Pubmed]   

31.Reid GK, Besterman JM, MacLeod AR. Selective Inhibition of DNA methyltransferase enzymes as a novel strategy for cancer treatment. Curr Opin Mol Ther 2002; 4:130-7.
[
Pubmed]   

32.Mani S, Herceq Z. DNA demethylating agents and epigenetic therapy of cancer. Adv Genet 2010; 70:327-40.
[
DOI via Crossref]    [Pubmed]   

33.Mitsiades CS, Mitsiades NS, Mcmullan CJ, Poulaki V, Shringarpure R, Hideshima T, Akiyama M, Chauhan D, Munshi N, Gu X, Bailey C, Joseph M, Libermann TA, Richon VM, Marks PA, Anderson KC. Transcriptional signature of histone deacetylase inhibition in multiple myeloma: biological and clinical implications. Proc Natl Acad Sci USA 2004; 101:540-5.
[
DOI via Crossref]    [Pubmed]    [PMC Free Fulltext]   

34.Kutko MC, Glick RD, Butler LM, Coffey DC, Rifkind RA, Marks PA, Richon VM, LaQualia MP. Histone deacetylase inhibitors induce growth suppression and cell death in human rhabdomyosarcoma in vitro. Clin Cancer Res 2003; 9:5749-55.
[
Pubmed]   

35.Marks PA, Miller T, Richon VM. Histone deacetylases. Curr Opin Pharmacol 2003; 3:344-51.
[
DOI via Crossref]   

36.Monneret C. Histone deacetylase inhibitors for epigenetic therapy of cancer. Anticancer Drugs 2007; 18:363-70.
[
DOI via Crossref]    [Pubmed]   

37.Huang BH, Laban M, Leung CH, Lee L, Lee CK, Salto-Tellez M, Raju GC, Hooi SC. Inhibition of histone deacetylase 2 increases apoptosis and p21cip1/waf1 expression, independent of histone deacetylase 1. Cell Death Differ 2005; 12:395-404.
[
DOI via Crossref]    [Pubmed]   

38.Hrzenjak A, Moinfar F, Kremser ML, Strohmeier B, Staber PB, Zatloukal K, Denk H. Valproate inhibition of histone deacetylase 2 affects differentiation and decreases proliferation of endometrial stromal sarcoma cells. Mol Cancer Ther 2006; 5:2203-10.
[
DOI via Crossref]    [Pubmed]   

39.Marshall GM, Gherardi S, Xu N, Neiron Z, Trahair T, Scarlett CJ, Chang DK, Liu PY, Jankowski K, Iraci N, Haber M, Norris MD, Keating J, Sekyere E, Jonquieres G, Stossi F, Katzenellenbogen BS, Biankin AV, Perini G, Liu T. Transcriptional upregulation of histone deacetylase 2 promotes myc-induced oncogenic effects. Oncogene 2010; 29:5957-68.
[
DOI via Crossref]    [Pubmed]   

40.Biancotto C, Friqe G, Minucci S. Histone modification therapy of cancer. Adv Genet 2010; 70:341-86.
[
DOI via Crossref]    [Pubmed]   

41.Copeland A, Buqlio D, Younes A. Histone deacetylase inhibitors in lymphoma. Curr Opin Oncol 2010; 22:431-6.
[
DOI via Crossref]    [Pubmed]   

42.Beumer JH, Tawbi H. Role of histone deacetylases and their inhibitors in cancer biology and treatment. Curr Clin Pharmacol 2010; 5:196-208.
[
DOI via Crossref]   

43.Zhu WG, Otterson GA. The interaction of histone deacetylase inhibitors and DNA methyltransferase inhibitors in the treatment of human cancer cells. Curr Med Chem Anticancer Agents 2003; 3:187-99.
[
DOI via Crossref]    [Pubmed]   

44.Griffiths EA, Gore SD. DNA methyltransferase and histone deacetylase inhibitors in the treatment of myelodysplastic syndromes. Semin Hematol 2008; 45:23-30.
[
DOI via Crossref]    [Pubmed]    [PMC Free Fulltext]   

45.Hellebrekers DM, Griffioen AW, Van Engeland M. Dual targeting of epigenetic therapy in cancer. Biochim Biophys Acta 2007; 1775:76-91.


46.Lund E, Guttinger S, Calado A, Dahlberg JE, Kutay U. Nuclear export of microRNA precursors. Science 2004; 303:95-8.
[
DOI via Crossref]    [Pubmed]   

47.Iorio MV, Pioavan C, Croce CM. Interplay between microRNAs and the epigenetic machinery: an intricate network. Biochim Biophys Acta 2010; 1799:694-701.


48.Wu L, Zhou H, Zhang Q, Zhang J, Ni F, Liu C, Qi Y. DNA methylation mediated by a microrna pathway. Mol Cell 2010; 38:465-75.
[
DOI via Crossref]    [Pubmed]   

49.Yoo AS, Staahl BT, Chen L, Crabtree GR. MicroRNA-mediated switching of chromatin-remodelling complexes in neural development. Nature 2009; 460:642-6.
[
Pubmed]    [PMC Free Fulltext]   

50.Alvarez-Saavedra M, Antoun G, Yanagiya A, Oliva-Hernandez R, Cornejo-Palma D, Perez-Iratxeta C, Sonenberg N, Cheng HY. MiRNA-132 orchestrates chromatin remodeling and translational control of the circadian clock. Hum Mol Genet 2011; 20:731-51.
[
DOI via Crossref]    [Pubmed]   

51.van Wolfswinkel JC, Ketting RF. The role of small non-coding RNAs in genome stability and chromatin organization. J Cell Sci 2010; 123:1825-39.
[
DOI via Crossref]    [Pubmed]   

52.Mattick JS. The genetic signatures of noncoding RNAs. Plos Genetics 2009; 5: e1000459.
[
DOI via Crossref]    [Pubmed]    [PMC Free Fulltext]   

53.Bandiera S, Hatem E, Lyonnet S, Henrion-Caude A. microRNAs in diseases: from candidate to modifier genes. Clin Genet 2010; 77: 306-13.
[
DOI via Crossref]    [Pubmed]   

54.Breving K, Esquela-Kerscher A. The complexities of microRNA regulation: mirandering around the rules. Int J Biochem Cell Biol 2010; 42:1316-29.
[
DOI via Crossref]   

55.Qureshi IA, Mehler MF. Regulation of non-coding RNA networks in the nervous system--what's the rest of the story? Neurosci Lett 2009; 466:73-80.
[
DOI via Crossref]    [Pubmed]    [PMC Free Fulltext]   

56.Mattick JS, Taft RJ, Faulkner GJ. A global view of genomic information--moving beyond the gene and the master regulator. Trends Genet 2010; 26:21-8.
[
DOI via Crossref]    [Pubmed]   

57.Dinger ME, Mercer TR, Mattick JS. RNAs as extracellular signaling molecules. J Mol Endocrinol 2008; 40:151-9.
[
DOI via Crossref]    [Pubmed]   

58.Lujambio A, Esteller M. How epigenetics can explain human metastasis: a new role for microRNAs. Cell Cycle 2009; 8:377-82.
[
DOI via Crossref]    [Pubmed]   

59.Calin GA, Ferracin M, Cimmino A, Di Leva G, Shimizu M, Wojcik SE, Iorio MV, Visone R, Sever NI, Fabbri M, Iuliano R, Palumbo T, Pichiorri F, Roldo C, Garzon R, Sevignani C, Rassenti L, Alder H, Volinia S, Liu CG, Kipps TJ, Negrini M, Croce CM. A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med 2005; 353:1793-801.
[
DOI via Crossref]    [Pubmed]   

60.Davalos V, Esteller M. MicroRNAs and cancer epigenetics: a macrorevolution. Curr Opin Oncol 2010; 22:35-45.
[
DOI via Crossref]    [Pubmed]   

61.Esquela-Kerscher A, Slack FJ. Oncomirs - MicroRNAs with a role in cancer. Nat Rev Cancer 2006; 6:259-69.
[
DOI via Crossref]    [Pubmed]   

62.Paranjape T, Slack FJ, Weidhass JB. MicroRNAs: tools for cancer diagnostics. Gut 2009; 58:1546-54.
[
DOI via Crossref]    [Pubmed]    [PMC Free Fulltext]   

63.Hayashita Y, Osada H, Tatematsu Y, Yamada H, Yanagisawa K, Tomida S, Yatabe Y, Kawahara K, Sekido Y, Takahashi T. A Polycistronic MicroRNA cluster, mir-17-92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res 2005; 65:9628-32.
[
DOI via Crossref]    [Pubmed]   

64.Voorhoeve PM, Le Sage C, Schrier M, Gillis AJ, Stoop H, Nagel R, Liu YP, Van Duijse J, Drost J, Griekspoor A, Zlotorynski E, Yabuta N, De Vita G, Nojima H, Looijenga LH, Agami R. A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. Cell 2006; 124:1169-81.
[
DOI via Crossref]    [Pubmed]   

65.Shin KH, Bae SD, Hong HS, Kim RH, Kang MK, Park NH. Mir-181a shows tumor suppressive effect against oral squamous cell carcinoma cells by downregulating k-ras. Biochem Biophys Res Commun 2011; 404:896-902.
[
DOI via Crossref]    [Pubmed]   

66.Takamizawa J, Konishi H, Yanagisawa K, Tomida S, Osada H, Endoh H, Harano T, Yatabe Y, Nagino M, Nimura Y, Mitsudomi T, Takahashi T. Reduced expression of the Let-7 MicroRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res 2004; 64:3753-6.
[
DOI via Crossref]    [Pubmed]   

67.Song YX, Yue ZY, Wang ZN, Xu YY, Luo Y, Xu HM, Zhang X, Jiang L, Xing CZ, Zhang Y. MicroRNA-148b is frequently down-regulated in gastric cancer and acts as a tumor suppressor by inhibiting cell proliferation. Mol Cancer 2011; 10:1.
[
DOI via Crossref]    [Pubmed]    [PMC Free Fulltext]   

68.Ordovas JM, Smith CE. Epigenetics and cardiovascular disease. Nat Rev Cardiol 2010; 7:510-9.
[
DOI via Crossref]    [Pubmed]    [PMC Free Fulltext]   

69.Urdinguio RG, Sanchez-Mut JV, Esteller M. Epigenetic mechanisms in neurological diseases: genes, syndromes, and therapies. Lancet Neurol 2009; 8:1056-72.
[
DOI via Crossref]   

70.Ptak C, Petronis A. Epigenetic approaches to psychiatric disorders. Dialogues Clin Neurosci 2010; 12:25-35.
[
Pubmed]   

71.Brooks WH, Le Dantec C, Pers JO, Youinou P, Renaudineau Y. Epigenetics and autoimmunity. J Autoimmun 2010; 34:J207-19.
[
DOI via Crossref]    [Pubmed]   

72.Trenkmann M, Brock M, Ospelt C, Gay S. Epigenetics in rheumatoid arthritis. Clin Rev Allergy Immunol 2010; 39:10-9.
[
DOI via Crossref]   

73.Pinney SE, Simmons RA. Epigenetic mechanisms in the development of type 2 diabetes. Trends Endocrinol Metabol 2010; 21:223-9.
[
DOI via Crossref]   

74.Villeneuve LM, Natarajan R. The role of epigenetics in the pathology of diabetic complications. Am J Physiol Renal Physiol 2010; 299:F14-25.
[
DOI via Crossref]    [Pubmed]    [PMC Free Fulltext]   

75.Campion J, Milagro FI, Martinez JA. Individuality and epigenetics in obesity. Obes Rev 2009; 10:383-92.
[
DOI via Crossref]    [Pubmed]   

76.Symonds ME, Sebert SP, Hyatt MA, Budge H. Nutritional programming of the metabolic syndrome. Nat Rev Endocrinol 2009; 5:604-10.
[
DOI via Crossref]    [Pubmed]   

77.Bruce KD, Hanson MA. The developmental origins, mechanisms, and implications of metabolic syndrome. J Nutr 2010; 140:648-52.
[
DOI via Crossref]    [Pubmed]   

78.Sookoian S, Pirola CJ. Metabolic syndrome: from the genetics to the pathophysiology. Curr Hypertens Rep 2011; 13:149-57.
[
DOI via Crossref]    [Pubmed]   

79.Korkmaz A, Topal T, Tan DX, Reiter RJ. Role of melatonin in metabolic regulation. Rev Endocr Metab Disord 2009; 10:261-70.
[
DOI via Crossref]    [Pubmed]   

80.Peedicayil J. Epigenetic therapy--a new development in pharmacology. The Indian J Med Res 2006; 123:17-24.
[
Pubmed]   

81.Mund C, Lyko F. Epigenetic cancer therapy: proof of concept and remaining challenges. Bioessays 2010; 32:949-57.
[
DOI via Crossref]    [Pubmed]   

82.Lyko F, Brown R. DNA methyltransferase inhibitors and the development of epigenetic cancer therapies. J Natl Cancer Inst 2005; 97:1498-506.
[
DOI via Crossref]    [Pubmed]   

83.Mai A, Altucci L. Epi-drugs to fight cancer: from chemistry to cancer treatment, the road ahead. Int J Biochem Cell Biol 2009; 41:199-213.
[
DOI via Crossref]   

84.Hellebrekers DM, Griffioen AW, Van Engeland M. Dual targeting of epigenetic therapy in cancer. Biochim Biophys Acta 2007; 1775:76-91.


85.Korkmaz A, Reiter RJ. Epigenetic regulation: a new research area for melatonin? J Pineal Res 2008; 44:41-4.
[
Pubmed]   

86.Brueckner B, Lyko F. DNA methyltransferase inhibitors: old and new drugs for an epigenetic cancer therapy. Trends Pharmacol Sci 2004; 25:551-4.
[
DOI via Crossref]    [Pubmed]   

87.Link A, Balaguer F, Goel A. Cancer chemoprevention by dietary polyphenols: promising role for epigenetics. Biochem Pharmacol 2010; 80:1771-92.
[
DOI via Crossref]    [Pubmed]   

This Article Cited By the following articles

Contemporary proteomic strategies for clinical epigenetic research and potential impact for the clinic
Expert Review of Proteomics 2015; 12(2): 197-212.

1
 
Aberrant methylation patterns in cancer: a clinical view
Biochemia Medica 2015; 25(2): 161-176.

2
 
Evidence for Epigenetic Alterations in Turner Syndrome Opens up Feasibility of New Pharmaceutical Interventions
Current Pharmaceutical Design 2014; 20(11): 1778-1785.

3
 
Ca2+/Calmodulin-Dependent Protein Kinase- II in Vasoactive Peptide- Induced Responses and Vascular Biology
Current Vascular Pharmacology 2014; 12(2): 249-257.

4
 
How Much Human Disease Is Caused by Exposure to Organic Chemicals?
Effects of Persistent and Bioactive Organic Pollutants on Human Health 2013; (): 557-569.

5
 

How to Cite this Article
Pubmed Style

Korkmaz A, Manchester LC, Topal T, Ma S, Tan DX, Reiter RJ. Epigenetic mechanisms in human physiology and diseases. J Exp Integr Med. 2011; 1(3): 139-147. doi:10.5455/jeim.060611.rw.003



Web Style

Korkmaz A, Manchester LC, Topal T, Ma S, Tan DX, Reiter RJ. Epigenetic mechanisms in human physiology and diseases. www.scopemed.org/?mno=5998 [Access: September 30, 2016]. doi:10.5455/jeim.060611.rw.003



AMA (American Medical Association) Style

Korkmaz A, Manchester LC, Topal T, Ma S, Tan DX, Reiter RJ. Epigenetic mechanisms in human physiology and diseases. J Exp Integr Med. 2011; 1(3): 139-147. doi:10.5455/jeim.060611.rw.003



Vancouver/ICMJE Style

Korkmaz A, Manchester LC, Topal T, Ma S, Tan DX, Reiter RJ. Epigenetic mechanisms in human physiology and diseases. J Exp Integr Med. (2011), [cited September 30, 2016]; 1(3): 139-147. doi:10.5455/jeim.060611.rw.003



Harvard Style

Korkmaz, A., Manchester, L. C., Topal, T., Ma, S., Tan, D. X. & Reiter, R. J. (2011) Epigenetic mechanisms in human physiology and diseases. J Exp Integr Med, 1 (3), 139-147. doi:10.5455/jeim.060611.rw.003



Turabian Style

Korkmaz, Ahmet, Lucien C. Manchester, Turgut Topal, Shuran Ma, Dun Xian Tan, and Russel J. Reiter. 2011. Epigenetic mechanisms in human physiology and diseases. Journal of Experimental and Integrative Medicine, 1 (3), 139-147. doi:10.5455/jeim.060611.rw.003



Chicago Style

Korkmaz, Ahmet, Lucien C. Manchester, Turgut Topal, Shuran Ma, Dun Xian Tan, and Russel J. Reiter. "Epigenetic mechanisms in human physiology and diseases." Journal of Experimental and Integrative Medicine 1 (2011), 139-147. doi:10.5455/jeim.060611.rw.003



MLA (The Modern Language Association) Style

Korkmaz, Ahmet, Lucien C. Manchester, Turgut Topal, Shuran Ma, Dun Xian Tan, and Russel J. Reiter. "Epigenetic mechanisms in human physiology and diseases." Journal of Experimental and Integrative Medicine 1.3 (2011), 139-147. Print. doi:10.5455/jeim.060611.rw.003



APA (American Psychological Association) Style

Korkmaz, A., Manchester, L. C., Topal, T., Ma, S., Tan, D. X. & Reiter, R. J. (2011) Epigenetic mechanisms in human physiology and diseases. Journal of Experimental and Integrative Medicine, 1 (3), 139-147. doi:10.5455/jeim.060611.rw.003



Submit your manuscript
Register
Abstracting & Indexing
Instructions for Authors
Editorial Board
Aims & Scope
About this Journal
Sign up for TOC

ARTICLE TOOLS
Abstract
PDF Fulltext
Print this article Print this Article
How to cite this articleHow to cite this article
Export to
Export to
Related Records
 Articles by Ahmet Korkmaz
Articles by Lucien C. Manchester
Articles by Turgut Topal
Articles by Shuran Ma
Articles by Dun Xian Tan
Articles by Russel J. Reiter
on IndexScholar Fulltext
on Google
on Google Scholar
Article Statistics
 Viewed: 6417
Downloaded: 1502
Cited: 5




 




» For Authors




Become Reviewer


» Login Area






Follow ScopeMed on Twitter

ScopeMed Home
Job Opportunities/Service Offers
About ScopeMed
Terms & Conditions
Privacy Policy
Contact Us

The articles in Scopemed are open access articles licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.
ScopeMed is a Service of SAGEYA Publishing for Scientific Publications. Copyright © ScopeMed® International Medical Journal Management and Indexing System.